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ABSTRACT
The project aims to find out whether the recently popular attention-
based model of Transformer [8] could perform better than previous
baseline proposed in the work by He et al. [4]. We will compare
the performance of transformer model using similar input setup to
the work of Behavior Sequence Transformer [1] to a baseline Long
Short-TermMemory model using the same input setup [5]. We mea-
sure the performance of the two models on the dataset MovieLens
[3] that contains 3,900 movies, 6,040 users, and 1,000,209 ratings,
and each user has rated at least 20 movies, with integer scores
ranging from 1 to 5. MovieLens is widely used to test and develop
recommendation algorithms, especially collaborative filtering al-
gorithms. The two models are trained and validated on the task of
predicting user ratings based on sequences of feature inputs. The
Long Short-Term memory model achieves an average root mean
square error of approximately 1.3547 on validation data, and the
transformer model achieves an average root mean square error of
approximately 1.2122 on validation data.

1 INTRODUCTION
1.1 Aim
We’re trying to figure out whether the Transformer model [8] could
do better than plain Long Short-Term Memory model [5] by mea-
suring how close the models could predict user ratings based on
sequences of feature inputs including user attributes such as age,
sex, occupation, and movie attributes, such as genre extracted from
the MoiveLens [3] dataset.

1.2 Challenges
Most current recommendation models have significantly low ac-
curacy. For Item-Item Collaborative Filtering model, to the lack of
data, it is difficult to propose users or items with similar features
[7]. For User-based Collaborative Filtering Recommendation model
[6], it is hard to evaluate its trust level. Neural Collaborative Fil-
tering [4] model has a Normalized Discounted Cumulative Gain of
only 0.447, which indicates that the actually interacted item is not
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very likely to be ranked highly among predicted items, suggesting
comparatively low accuracy of the model [4].

1.3 Impact
This project explores the use of the Transformer model [8] in a
recommendation system. The attention layers in the Transformer
model is proven to improve the success of many models in recent
years, and it has become omnipresent in many state-of-the-art
machine learning models. Therefore, it is important for us to ex-
amine if the transformer model [8] with multi-head attention can
have higher performance in rating prediction tasks than existing
recurrent models, such as the Long Short-Term Memory model [5].
The result demonstrates that the transformer model could generate
closer rating prediction to the ground truth rating than the Long
Short-Term Memory model. In recommendation systems, even a
slightly increase in prediction accuracy can lead to an increase in
profit margin, and therefore, we conclude that this project can lead
to an increase in profit margin of current recommendation systems.
Proven that the transformer model can have a higher recommen-
dation accuracy, it is also worthy for future researches to further
explore the potential of the transformer model, and to build a better
recommendation system for sequential prediction based on our
results.

2 LITERATURE SURVEY AND BASELINES
2.1 Literature Survey
MovieLens [3] is one of the most popular datasets in the world.
Many research use these database to test and develop their core
algorithmic advances in recommender systems, including:

Item–Item Collaborative Filtering
In 2001, Badrul Sarwar et al. [7] came upwith a new algorithm-
Item-Based Collaborative Filtering Recommendation Algo-
rithms, which used MovieLens as their training and test
dataset. However, in many systems, the number of users and
items is very large, and the interaction information between
users and items is often very small, which leads to the sparse
user-item matrix. Due to the lack of data, it is difficult to
propose users or items with similar features [7].
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User-based Collaborative Filtering Recommendation
Massa and Avesani [6] proposed the User-based collabora-
tive filtering recommendation algorithm. It uses statistical
techniques to find neighbors with the same preferences as
the target and then generates recommendations to the users
according to the preferences of the neighbors. The main
challenge of this algorithm is low scalability. The algorithms
require computation that grows with both the number of
users and the number of items, which means the it gets
bigger with time.

2.2 Baseline: Long Short-Term Memory Model
Long Short-Term Memory model [5] can learn to minimize
time lags over 1000 discrete time steps by forcing a constant
error flow through a constant error carousel within a particu-
lar unit. The multiplication gate unit learns to open and close
into a constant stream of errors. Long Short-Term Memory
model is local in time and space. The computational complex-
ity and weight of each time step are O(1). According to the
original authors, Long Short-Term Memory is more success-
ful and learns faster than previous methods such as real-time
repetitive learning, time back propagation, repetitive cascade
correlation, Elman networks, and neural sequence chunk-
ing. Long Short-Term Memory also solves complex, artificial,
long-lag tasks that previous recursive network algorithms
have never solved. Since Long Short-Term Memory model
has good ability in processing long sequences of data rep-
resentations, it has been widely used in recommendation
systems which involves sequential prediction of user inter-
action based on input features. Besides, Devooght et al. has
previously applied the model to the MovieLens dataset [2].

2.3 Transformer
Encoder and Decoder Stacks The encoder is composed of a

stack of 𝑁 = 6 identical layers. The decoder is also composed
of a stack of 𝑁 = 6 identical layers.

Figure 1: Transformer framework [8]

Attention function
(1) Scaled Dot-Product Attention
The input consists of queries and keys of dimension 𝑑𝑘 , and
values of dimension 𝑑𝑣 . Scientists compute the dot products
of the query with all keys, divide each by

√
𝑑𝑘 , and apply a

softmax function to obtain the weights on the values.
(2) Multi-Head Attention
Instead of performing a single attention functionwith𝑑model-
dimensional keys, values and queries, the transformer model
is beneficial to linearly project the queries, keys, and values
h times with different, learned linear projections to 𝑑𝑘 , 𝑑𝑘
and 𝑑𝑣 dimensions, respectively. On each of these projected
versions of queries, keys, and values we will then perform
the attention function in parallel, yielding 𝑑𝑣-dimensional
output values.

Position-wise Feed-Forward Networks Each of the layers
in our encoder and decoder contains a fully connected feed-
forward network, which is applied to each position sepa-
rately and identically.

Embeddings and Softmax Similar to other sequence trans-
duction models, scientists use learned embeddings to convert
the input tokens and output tokens to vectors of dimension.

Positional Encoding Tomake use of the order of the sequence
due to lack of convolution layers or sequential layers, scien-
tists inject some information about the relative or absolute
position of the tokens in the sequence.

Shortcoming The model is originally developed for sequence
to sequence translation, so it requires constructing users’
interactions as sequences. But this shortcoming would be
out-weighted by its ability to extract good features from
data.

3 DATASET DESCRIPTION
3.1 Dataset summary

The dataset contains a rating table which contains about 1
million ratings data and each of the rating is given by a user
for a movie at a timestamp. The dataset was created by about

Table 1: Dataset Summary

Dataset Movies Users Interactions

MovieLens 3900 6040 1,000,209

6400 users. It contains 1,000,209 ratings across about 3900
movies.

3.2 Data preparation
3.2.1 Source.
Our project will use the Movielens dataset from
https://grouplens.org/datasets/movielens.

3.2.2 Data preprocessing steps and explanations.
For features in Movielens:

(1) The movies that appear first in search results for a user are
those movies that the algorithm predicts that the user will

2022-04-28 03:15. Page 2 of 1–5.
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rate the highest. Movielens version4 blends a popularity
factor in with predicted rating to order the recommendation
lists.

(2) Tags appear in the later MovieLens datasets (10M and 20M).
This feature allows users to apply tags — words or short
phrases — to movies. MovieLens displays tags next to movies.
Tags are clickable to show a list of movies on which that tag
has been applied.

The visibility and ordering of tags differed by the user in early
versions to provide A/B testing data, but by 2006 the interface was
consolidated, sorting tags by the likelihood that the tag is “high
value” according to a published metric. In January 2007, MovieLens
launched a tag rating feature that put clickable thumbs-up-and-
down icons next to tags. In Spring 2009, the tagging interface was
given a new feature called “tag expressions” that dramatically in-
fluenced tagging behavior. This interface allowed users to retag
movies much more easily and caused an increase in the rate of
tagging activity, as well as an increase in tag diversity.

To preprocess:
(1) Feature selection The ratings data are only pairs of user_id

and movie_id and the corresponding ratings. To make our
prediction more robust, we select additional user features
from the user table and additional movie features from the
movie table. The additional user features are: sex, age_group,
and occupation. There are two possible values for sex: "M"
for male and "F" for female. There are seven age groups:
under 18, 18-24, 25-34, 35-44, 45-49, 50-55, 56+. Each age
group is represented using a single number: 1 for under 18,
18 for 18-24, 25 for 25-34, 35 for 35-44, 45 for 45-49, 50 for
50-55, 56 for 56+. There are 21 kinds of possible occupations,
20 of them have a specific name, such as "artist", and 1 is for
"others". The additional feature for movies is genre. There
are 18 kinds of genres, such as "Action" and "Adventure". A
movie may have more than one genre.

Table 2: Selected Features

Feature Name Example Value Number of possible values

user_id 1024 3883
user: sex "M" 2

user: age_group 18 7
user: occupation "artist" 21

movie_id 1024 6040
movie: genre "Action" 18

(2) Feature pre-processingWe pre-processed the feature val-
ues, such that each unique value in each feature category
other than user_id and movie_id would get a unique integer
identifier, or "index". The "index" would be continuous and
range from 0 to the number of possible unique values. For
example, sex would turn into 0 and 1 after pre-processing.
The first occupation, "artist", would get an "index" of 0, and
the last occupation, "writer", would get an "index" of 20 after
pre-processing. The second age group 18-25 (represented

by 18) would get an "index" of 1 after pre-processing. Pro-
cessing movie genres is more complex, since a movie may
have more than one genre. We use a one hot encoding to
represent whether a genre is an attribute of a movie. Each
movie would have a corresponding feature vector of length
18 (the total number of genres), and the corresponding bit
will be 1 if the movie is that certain genre, and vice versa.
After the pre-processing, all feature representations would
be in non-negative integer numbers.

(3) Sequence generation We join the pre-processed user and
movie features table with the ratings table. We group the rat-
ings by users and then sort each rating group by timestamp.
Then we cut the sequence of ratings for a single user into
smaller sequences of length 10. If there not enough data to
make a sequence of 10, then the sequence is ignored. During
training, if we set the batch size to 10, 10 such sequences
would be loaded. We shuffles the order of sequences before
training and evaluation. The contents in each sequence re-
mains unchanged.

4 EXPERIMENTAL SETTINGS
Our task will be a regression task since we are predicting the rating
of a user for a specific movie given sequences of length 10 of fea-
ture inputs (movie_id, user_id, age, sex, occupation, genre). Each
sequence represents a sequence of movies rated by the same user
sorted in by timestamp, and the input features user_id, age, sex and
occupation are related the users and input features movie_id and
genre are related to the movies. 85% of the sequences are used as the
training data, and 15% of the sequences are used as validation and
testing data. Each training and testing batch would have 10 of such
sequences, so batch size is 10. We will use root mean square error
to train the model and use average root means square error over
all validation data for evaluation since the root mean square error
measures the deviation of the predicted rating from the ground
truth ratings, and is suitable for regression tasks. The random seed
is set to 0 so the results could be reproduced. The system settings
are as follows: CPU is Intel Xeon CPU with 2.2GHz, GPU is Nvidia
Tesla T4 GPU of 16GB memory.

5 METHOD
(Option 1) Running existing methods

The first method we use is Long Short-Term Memory model [5].
We use the official implementation of the model by PyTorch, and the
documentation of the programming interface could be accessed at
the following link https://pytorch.org/docs/stable/generated/torch.
nn.LSTM.html. Long Short-Term Memory model has been widely
used as the building block of many recurrent deep neural networks.
The memory cell simulates the long-termmemory of human beings,
and the multiple gates connecting the input, previous hidden state
and memory cell state to generate the next hidden state, memory
cell state and output. In this project, we input sequences of features
to the model to get a rating prediction for each time step in the
sequence. Each time step consist of 6 features: user_id, movie_id,
sex, age, occupation, genre. All time steps in the sequence share
the same user and therefore the user-related features: sex, age,
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occupation. The sequence represents a continuous sequence of
rating of movies generated by a single user sorted by the original
timestamps. Each sequence is of length 10. For hyper-parameters,
we use 3 layers and a hidden dimension of 16 for Long Short-Term
Memory with drop out probability of 0.1. The learning rate is 0.01,
and the batch size is 10. We use the Long Short-Term Memory
model since the model is a widely used building block in many
other models and is also suitable for a sequential prediction task.

The other method we use is based on the architecture of the
Transformer model [8]. We use the official implementation of trans-
former by PyTorch, and the documentation of the programming
interface could be accessed at the following link https://pytorch.org/
docs/stable/generated/torch.nn.Transformer.html. We uses pass
data to the transformer in the way similar to that used in Behav-
ior Sequence Transformer [1], where they input the same feature
sequences to both the "Inputs" and "Outputs" component of the
transformer networks. In this way, the multi-head attention layer
which connects the "Inputs" and "Outputs" component would gener-
ate the self-attention result of the feature sequences. (Please refer to
figure 1 for transformer model architecture) The feature sequences
has the exact same format as the inputs to the Long Short-Term
Memory model. The key advantage of the transformer model is the
application of multi-head attention to generating attention output
from embedding of the features. Each transformer block is built
upon multiple linear layers and the attention layers, and the model
consists of multiple transformer blocks. As transformer takes se-
quential data, we will use sequence of user interaction with movies
to predict the sequence of rating outputs. For hyper-parameters,
we use learning rate of 0.01, batch size of 10, hidden dimension of
16, 2 attention heads, 3 layers of encoders and 3 layers of decoders.
We selected this method as the comparison to the baseline method
since the transformer model has proven its ability to extract more
context-aware representation [8] and could possibly perform better
than the baseline method.

6 EXPERIMENTS AND RESULTS
We ran the training for 10 epochs for each model. The following
table shows the result of the two model measured in Root Means
Square Error (RMSE) running on validation dataset after 10 epochs
of training with learning rate of 0.01 and Stochastic Gradient De-
scent optimization algorithm.

Figure 2: Long Short-Term Memory [5] Loss Graph

Figure 3: Transformer [8] Loss Graph

The above graphs display the training loss of the two models
respectively during training. It shows that Transformer model [8]
has lower loss than the Long Short-Term Memory model [5] in
each epoch. The graph shows that for Long Short-Term Memory
model, the loss is descending slower towards the end, meaning that
it would be harder to continue optimizing the model. However, the
loss of Transformer model is still descending comparatively quickly
meaning that the model could be further optimized with more
epochs. If we have trained more epochs, we would see transformer
outperforming even more.

Table 3: Testing results

Metric Transformer Long Short-Term Memory

RMSE 1.2122 1.3547

As shown in the table shows that the transformer model outper-
forms the Long Short-Term Memory model in the task of predicting
users’ rating on movies given the same sequence of feature input
for having a smaller average Root Mean Square Error. There are
several potential explanations for this result:

(1) Transformer is better at capturing time sequence relationship
without the problem of gradient explosion or vanishing in
recurrent networks since transformer eliminates recurrent
structure but rather uses positional encoder to represent the
sequential information.

(2) The attention layer generates better weighting of the in-
put features across timestamps than models using recurrent
structure, and the weighting would help the model find out
the importance of each feature.

(3) There are simply more parameters in the transformer model
since there are more linear layers in the attention layers
and also the feed-forward layers, and usually more layers
and parameters suggests better performance since the model
would be better capturing more subtle features.

As a result, it is not surprising that the transformer model outper-
forms the Long Short-Term Memory model as the result shows.
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7 CONCLUSION
Our results demonstrate that Transformer model [8] generally per-
forms better than the Long Short-TermMemorymodel [5] onMovie-
Lens dataset [3]. However, the comparison is not comprehensive
enough. There are other more advanced model than simply Long
Short-Term Memory model, and we need to compare more of such
models to the transformer model if possible. Also, the MovieLens
dataset [3] is comparatively limited since the categories of features
are small and interaction data is not that diverse.

To further understand the performance of the Transformermodel
[8], future works should evaluate the performance of the trans-
former model on more variety of data and compare against more
kinds of model in sequential prediction tasks in the field of recom-
mendation systems. Proven that the transformer model can have a
higher recommendation accuracy, it is worthy to further explore
the potential of the Transformer model [8], and to build a better
recommendation system for sequential prediction.
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